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Abstract 

Attentional engagement is known to vary on a moment-to-moment basis. However, few self-

report methods can effectively capture dynamic fluctuations in attentional engagement over time. 

In the current paper, we evaluated the utility of stimulated recall, a method wherein individuals 

are asked to remember their subjective states while using a mnemonic cue, for the measurement 

of temporal changes in attentional engagement. Across three experiments, we asked participants 

to watch video lectures and assessed their in-the-moment levels of attentional engagement using 

intermittent thought probes. Then, we used stimulated recall by cueing participants with short 

video clips from the lectures to retrospectively assess the levels of attentional engagement they 

had experienced when they first watched those clips within the video lectures. Experiment 1 

tested the statistical overlap between in-the-moment and video-stimulated ratings, Experiment 2 

tested the generalizability of stimulated recall across different types of videos, and Experiment 3 

tested order effects by presenting the video-stimulated probe clips out of sequential order. Across 

all experiments, we found statistically robust correspondence between in-the-moment and video-

stimulated ratings of attentional engagement, illustrating a strong convergence between these two 

methods of assessment. Taken together, our findings indicate that stimulated recall provides a 

new and practical methodological approach that can accurately capture dynamic fluctuations in 

subjective attentional states over time. 
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Attention is responsible for shaping our experience of the world. By flexibly controlling 

and guiding our limited computational resources over time, this neurocognitive mechanism can 

dynamically shift and vary to bring different sources of information into our consciousness 

(Anderson et al., 2011; Carrasco, 2011; Desimone & Duncan, 1995; Itti & Koch, 2001; Luck & 

Vecera, 2002; Pashler, 1998; Posner & Petersen, 1990; Wolfe & Horowitz, 2004). As time 

unfolds, attentional engagement can fluctuate on a moment-to-moment basis between states of 

attentiveness when we are focused on the external environment and states of mind wandering 

when we are focused on our internal thoughts. Prior studies have demonstrated that attentional 

engagement can vary across diverse timescales (e.g., over the course of a day, Busch & 

VanRullen, 2010; Hylan, 1898; over the span of an hour, Smallwood et al., 2008; Terhune et al., 

2017; over a period of seconds, Cheyne et al., 2009; Liddell, 1919) and across various activities 

(e.g., during work, Gable et al., 2019; Risko et al., 2013; Smallwood et al., 2011; Szpunar, 

Moulton, et al., 2013; during leisure activities, Feng et al., 2013; Killingsworth & Gilbert, 2010; 

Kopp et al., 2016; during periods of rest, Christoff et al., 2016; Delorme & Brandmeyer, 2019; 

Hasenkamp et al., 2012; Tusche et al., 2014). Shifts in engagement have also been associated 

with wide-ranging behavioural outcomes (e.g., changes in reading and comprehension, McVay 

& Kane, 2012; Schad et al., 2012; Unsworth & McMillan, 2013; fluctuations in learning and 

retention, Kane et al., 2007; Risko et al., 2012; differences in overall performance, Bastian & 

Sackur, 2013; Cheyne et al., 2009; Smallwood et al., 2007). For these reasons, sophisticated 

methods are needed that can comprehensively capture dynamic fluctuations in attentional 

engagement. 

Currently, two self-report approaches are commonly used in the literature when assessing 

changes in attentional engagement over time. Thought probes (Giambra, 1995; Killingsworth & 
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Gilbert, 2010; Larson & Csikszentmihalyi, 1978; Wammes et al., 2016) are experience-sampling 

methods that rely on immediate assessments by interrupting participants throughout their task to 

ask about their current engagement at that moment in time. For example, Smallwood et al. 

(2004) randomly presented thought probes during a sustained attention task to demonstrate that 

this method can accurately distinguish when states of mind wandering were related or unrelated 

to the task at hand. In contrast, retrospective reports (Kahneman et al., 2004; Matthews et al., 

1999) are aggregate methods that rely on delayed recall by waiting until the completion of the 

task to ask participants about their overall engagement throughout the task. For instance, Baird et 

al. (2012) used retrospective reports to assess mind wandering during demanding or 

undemanding tasks to show that easy and simple tasks that allow the mind to freely wander can 

facilitate creative problem solving. 

Although both thought probes and retrospective reports have been widely used for the 

measurement of attentional engagement, they both have a serious shortcoming in that they are 

not suited for capturing temporal precision in the subtle fluctuations of attentional engagement 

over time. Specifically, when utilizing thought probes, measuring attentional engagement on a 

frequent moment-to-moment basis is theoretically possible but not practically feasible since 

probes interrupt the flow of the task and can disrupt ongoing attentional states. Past studies have 

established that thought probes appearing several minutes apart allow sufficient time for 

individuals to re-engage with their task (Leroy et al., 2020; Marty-Dugas et al., 2021; Welhaf et 

al., 2022). This finding implies that probing at a higher rate could likely disrupt natural 

engagement and/or task performance, an idea supported by prior work showing that the 

frequency of thought probes throughout a task influences the relative proportion of reported 

mind wandering (Greve & Was, 2022; Schubert et al., 2020; Seli, Carriere, et al., 2013). 
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Although retrospective reports avoid this issue since they do not interrupt task performance, they 

suffer from other limitations. Namely, retrospective reports typically require participants to 

aggregate (i.e., sum or average) their experiences over a more extended period to time 

(sometimes even across the whole task), and as commonly implemented, they fail to direct 

participants to report their engagement for specific points in time (Ellison et al., 2020; Karapanos 

et al., 2010). Thus, for different reasons, thought probes and retrospective reports lack temporal 

precision because they under-sample the underlying attentional engagement one is attempting to 

quantify. 

Given the need for approaches that can track dynamic fluctuations in attentional 

engagement over time with a high degree of precision, one viable approach would be to utilize 

methods that can allow for greater temporal specificity when measuring attentional states. An 

existing method that could be adapted for these purposes is stimulated recall, wherein 

participants’ experiences are retrospectively assessed upon completion of a task through the use 

of a mnemonic cue (e.g., audio, images, video) that involves re-presenting segments of the 

original event (Bloom, 1953; Calderhead, 1981; Gass & Mackey, 2016; Lyle, 2003). For 

example, stimulated recall has been previously used by asking individuals to rate the moment-to-

moment affective states they experienced when giving a presentation, while watching a video 

recording of their presentation as a recall cue (Gregersen et al., 2014). In this manner, stimulated 

recall preserves the advantages of thought probes and retrospective reports in that it allows for 

the measurement of subjective states over time; however, this method additionally allows for the 

measurement of as many specific time points as necessary via the recall cues. This provides the 

opportunity for a high degree of temporal precision when retrospectively probing dynamic and 

free-flowing experiences. 
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For these reasons, stimulated recall has proven advantageous within numerous fields of 

research to study a wide range of cognitive and affective experiences. For example, within 

behavioural research, stimulated recall has been used to examine constraints on working memory 

due to cognitive load (Beers et al., 2006); within communication, it has been used to study 

individuals’ second-language experiences (MacIntyre & Legatto, 2010) and musicians’ 

techniques for successful collaboration (Dempsey, 2010); within education, it has lent insight 

into students’ thoughts during classroom lectures (O'Brien, 1993), children’s perceptions of their 

learning (Morgan, 2007), and teachers’ pedagogical beliefs (Meade & McMeniman, 1992); and 

within clinical domains, this method has accurately captured physicians’ memory for clinical 

encounters (Sinnott et al., 2017) and experiences of the physician-patient relationship (Paskins et 

al., 2014). Given the efficacy of this method across numerous domains, it seems likely that this 

approach could transfer successfully to measuring attentional engagement as well. 

Here, we assessed the viability of stimulated recall for capturing dynamic fluctuations in 

attention over time by evaluating the convergence between in-the-moment and retrospective 

ratings of attentional engagement. To do so, participants completed two experimental phases of 

the study. In Phase 1, participants completed a video-viewing task, which included thought 

probes to capture participants’ in-the-moment ratings of attentional engagement (immediate 

reports). Following this, in Phase 2, we implemented video-stimulated recall by presenting 

participants with short clips from the video they had just viewed and asking them to 

retrospectively estimate their level of attentional engagement when they first viewed that section 

of the video (video-stimulated reports). Video-stimulated reports were then compared against 

immediate reports to assess for statistical overlap. Experiment 1 assessed the overlap for a 30-

minute video when video-stimulated reports were measured in the same sequential runtime order 
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as immediate reports. Experiments 2 and 3 then assessed the generality of our findings by using 

two 15-minute videos that varied on different engagement metrics (Experiment 2) and querying 

whether video-stimulated reports remained accurate when presented out of sequential order 

(Experiment 3)1. Across all three experiments, our findings indicated that attentional engagement 

as measured via stimulated recall statistically overlapped with in-the-moment probe responses, 

validating that this methodological approach can be used to provide accurate and dynamic 

fluctuations of attentional engagement over time. 

Experiment 1 

Methods 

Participants 

 Prior to data collection, an a-priori power analysis was conducted using G*Power (test 

family: exact, statistical test: correlation; Faul et al., 2009) to determine the required sample size 

needed to detect a small effect size (ρ = 0.1; Cohen, 1988). Based on an alpha of .05 and power 

of .95, it was determined that approximately 103 participants would be needed. Because 

participants were recruited through online settings where the possibility of data loss due to 

standards of quality control is higher (Peer et al., 2014), we strategically overshot this sample 

size. As such, 112 participants (64 women, 45 men, 1 non-binary, 2 non-response; Mage = 20.9 

years, SDage = 1.9 years) were recruited for the experiment through the university’s online 

participant pool. Informed written consent was obtained from all, and course credit was provided 

 
1 Although the data were collected in order of Experiment 2 (Jan to Aug 2021), Experiment 3 (Apr to Aug 2021), 

and Experiment 1 (May to Oct 2021), they are presented here in the current order to aid with theoretical and 

methodological comparisons. 
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as compensation for their time. The study was conducted in accordance with the Declaration of 

Helsinki, and all protocol and procedures were approved by the University of Waterloo’s 

research ethics board (#42793). 

Materials and Stimuli 

Video Lectures. A single 30-minute video lecture was used as the stimulus for 

Experiment 1: a graduation speech featured by TED Talk on evolutionary psychology titled The 

Uniqueness of Humans (Sapolsky, 2009). The video contained both audio and visual elements 

and was displayed at full-screen resolution, embedded in the browser, with no playback controls 

visible. Prior to the video-viewing task, each participant was asked to report on their familiarity 

with the video topic on a scale from 1 (not at all familiar) to 7 (very familiar). Overall, the topic 

was reported as having a mean familiarity of 3.7 (SD = 1.6). 

Immediate Thought Probes. Participants’ in-the-moment attentional engagement was 

assessed using 20 immediate thought probes. Each immediate probe asked, “Just before this 

screen appeared, how engaged were you with the video lecture?”, with response options 

presented as a multiple-choice Likert-style scale ranging from 1 (not at all) to 7 (very). 

Immediate probe timestamps were programmed to occur randomly throughout the lecture, with 

the stipulation that probes could not occur within 60 seconds of one another. On average, 

immediate probes appeared every 90 seconds throughout the lecture. 

Video-Stimulated Probes. Participants’ retrospective attentional engagement was 

measured using twenty 15-second video clips from the lecture, followed by a video-stimulated 

probe. Each video-stimulated probe asked, “How engaged were you when you first watched this 
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section of the video lecture?”, with response options presented as a multiple-choice Likert-style 

scale ranging from 1 (not at all) to 7 (very). 

Video-stimulated probe timestamps were programmed to occur at least 10 seconds 

outside of any immediate probe timestamps, such that video-stimulated probes never overlapped 

with any immediate probes for the same participant, i.e., participants’ attentional engagement 

was never probed twice for the exact same content. This was done to ensure that video-

stimulated responses were not biased by participants’ initial immediate probe responses, and 

instead based on their actual remembered attentional states from their initial viewing of the 

lecture content. All clips associated with the video-stimulated probes were presented in 

sequential runtime order, i.e., in the same chronological order as they had originally appeared in 

the video lecture. 

Other Materials. There were several additional measures employed within the study 

design that were not directly related to the aims of the current paper and were thus not included 

in the current analyses. We summarize them here in the interest of full methodological 

disclosure. Specifically, after completing both phases of the study (i.e., the video-viewing task 

and video-simulated recall), participants completed a multiple-choice quiz pertaining to the 

content of the video lecture, a self-report measure of their level of motivation in completing the 

study, and a self-report measure of attentional control (Derryberry & Reed, 2002). 

Procedure 

Figure 1 illustrates the task sequence for the study. After providing informed consent, 

participants were asked to indicate their demographic information (i.e., gender, age). Participants 

then completed Phase 1 of the study. Here, they completed the video-viewing task, where they 
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were asked to view a video lecture and respond to immediate thought probes that would occur at 

random intervals. Participants were also instructed that they would be tested on their knowledge 

of the video content afterwards and were asked not to take notes or multitask while viewing the 

lecture. Once Phase 1 of the study was complete, participants moved on to Phase 2. During 

Phase 2, participants completed the video-stimulated recall task, where they were asked to view 

short clips from the video lectures that they had just watched and then respond to each with a 

video-stimulated probe. 

 

Figure 1. An illustration of the task sequence for the study. In Phase 1, participants viewed a video lecture and were 

intermittently asked to respond to immediate thought probes. In Phase 2, participants watched short clips from the 

video lecture and were asked to respond to associated video-stimulated probes. Critically, the video-stimulated 

probes did not overlap with periods of time that were probed during the initial video-viewing task. 

 

Results 

Data Exclusions 

Prior to data analysis, we removed data from any participants if they indicated that they 

had previously viewed the video lecture used for the study, given that prior knowledge of the 
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video content could impact both immediate and video-stimulated ratings of attentional 

engagement; five participants were excluded per this criterion. We also removed data from any 

participants if they were non-responsive to 20% of either immediate or video-stimulated probes 

given the difficulty of tracking attentional engagement accurately in these cases; six participants 

were excluded for this reason. No other exclusions were implemented. As a result, data from 101 

participants (56 women, 42 men, 1 non-binary, 2 non-response; Mage = 20.9 years, SDage = 1.9 

years) were included in the analysis. 

Data Analysis Plan 

The aim of the current study was to assess the viability of stimulated recall for capturing 

attentional fluctuations over time by determining the degree to which video-stimulated reports of 

attentional engagement converged with immediate reports of attentional engagement. Therefore, 

we evaluated immediate and video-stimulated probe data using two complementary approaches. 

First, as a preliminary check, we evaluated aggregate differences between immediate and 

video-stimulated probes by assessing overall ratings of attentional engagement using a paired-

samples t-test as a function of probe type (immediate versus video-stimulated). This analysis 

provided information regarding whether overall engagement ratings differed based on how they 

were probed. 

However, aggregate comparisons of attentional engagement can only provide a general 

assessment of the differences between immediate and video-stimulated ratings, and because 

timestamps between immediate and video-stimulated probes never overlapped with one another, 

a precise assessment that preserves the temporal relationship between the two is essential. 

Therefore second, as a more thorough exploration, we evaluated the temporal overlap between 
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immediate and video-stimulated probes. Although prior work using stimulated recall has 

typically evaluated temporal overlap through qualitative assessments of data (Gibbs, 2007; 

Willig, 2013), we aimed to take a quantitative approach instead. To do so, we used cross-

correlations and linear mixed-effects models to assess the underlying time series of immediate 

and video-stimulated probes (Brunsdon & Skinner, 1987; Gregson, 2014; Heath, 2000). Full 

analysis specifications are presented in Supplementary Materials. 

Consider the sample data for immediate and video-stimulated probes depicted in Figure 

2. Based on past literature (Cheyne et al., 2009; Hylan, 1898; Liddell, 1919), we can assume that 

discrete responses to thought probes of attentional engagement are merely time points along a 

continuous underlying time series of attentional engagement. For this reason, we interpolated 

immediate probe responses to construct an immediate time series, and similarly interpolated 

video-stimulated probe responses to construct a video-stimulated time series (Figure 2a). Then, 

to examine the overlap between the immediate and video-stimulated time series, we used cross-

correlations to assess the temporal relationship between the two to determine whether they 

represented the same underlying fluctuations in attentional engagement. For this, cross-

correlation scores between the immediate and video-stimulated time series were calculated when 

the two directly overlapped, i.e., at a time lag of 0 minutes, and when the time series were shifted 

forwards or backwards in time from one another, i.e., at various other time lags (Figure 2b). 

Given that cross-correlation scores can range from +1 (perfectly correlated) to 0 (not correlated) 

to –1 (negatively correlated), a maximally-positive cross-correlation at a time lag of 0 minutes 

would represent temporal convergence between immediate and video-stimulated time series, 

whereas increasing time lags would represent more temporally disparate comparisons.  
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Figure 2. A depiction of the temporal analysis used in the study: (a) We first constructed the underlying immediate 

and video-stimulated time series by interpolating the immediate and video-stimulated probe responses, respectively; 

(b) We then assessed the temporal relationship between immediate and video-stimulated time series at a time lag of 

0 compared to various other time lags. 
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Once cross-correlation scores across all time lags were computed, we then used linear 

mixed-effects models to estimate the cross-correlation score at a time lag of 0 minutes (intercept) 

and the impact of time lag on cross-correlation scores (slope). This approach was selected 

because cross-correlations of behavioural and cognitive data are known to have a large range and 

variability (see Baayen et al., 2008; Paxton & Dale, 2013) and because time lag variables are by 

nature correlated with one another. All models were run using fully specified random-effects 

structure across all intercepts and slopes (Barr et al., 2013). 

Across aggregate measures, if immediate and video-stimulated probe responses were 

equivalent such that they both represented similar overall ratings of attentional engagement, we 

would expect to find similar ratings across both types of probes (Hypothesis 1). Across temporal 

measures, if immediate and video-stimulated time series were equivalent such that they both 

represented the same underlying fluctuations in a given individual’s attentional engagement, we 

would expect to find peak positive cross-correlation scores at a time lag of 0 minutes 

(Hypothesis 2a) and decreases in cross-correlation scores with a shift in time lag away from 0 

minutes (Hypothesis 2b). 

While finding the foregoing patterns would provide compelling evidence for temporal 

overlap between the two time series, it is possible that these patterns could arise due to intrinsic 

properties of the video or random fluctuations that could be expected by chance (Dean & 

Dunsmuir, 2016), and not by immediate and video-stimulated time series effectively capturing 

the same underlying fluctuations within each individual. Therefore, to test this possibility, we 

created a noise distribution from our dataset by obliterating the association between each 

individual’s immediate and video-stimulated time series. To do so, we first randomly shuffled 

our data such that each participants’ immediate time series was paired without replacement with 
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another participants’ video-stimulated time series rather than their own. Cross-correlation scores 

were calculated for these shuffled pairs, and linear mixed-effects models were run to estimate the 

cross-correlation at a time lag of 0 minutes (intercept) and the impact of time lag on cross-

correlation scores (slope). This procedure was then repeated 1,000 times to construct noise 

distributions for both the intercept and the slope, which were then assessed in two ways. 

First, across all 1,000 repetitions, we examined the average effects of the noise 

distributions for all linear mixed-effects models. If stimulated recall were accurately capturing a 

given individual’s attentional engagement across the task and not intrinsic or random fluctuations 

that could be expected by chance, we would expect these noise distributions to fail Hypotheses 

2a and 2b (Hypotheses 2c and 2d). Second, for each of the 1,000 repetitions, we computed the z-

score of our original data’s true effect with respect to the noise distributions to directly compare 

these results against one another. We did this by first subtracting the intercept and slope of the 

noise distribution (i.e., the data associated with Hypotheses 2c and 2d) from the true intercept 

and slope of our original data (i.e., the data associated with Hypotheses 2a and 2b), and dividing 

each of these differences by the standard deviation of the noise distribution. If stimulated recall 

were capturing attentional engagement that was significantly different than our noise 

distribution, we would expect our z-scores to exceed the critical z-value at a 95% confidence 

level, i.e., an absolute value of +/–1.96 (Hypothesis 2e). 

Aggregate Assessment of Attentional Engagement 

A paired-samples t-test conducted as a function of probe type (immediate versus video-

stimulated) found no differences in average attentional engagement across immediate [M = 5.15, 

SD = 1.59] and video-stimulated responses [M = 5.05, SD = 1.67; t(100) = 1.20, p = .23, dz = 
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.12], providing evidence for an overall similarity in measures between the two methods of 

assessment. 

Temporal Assessment of Attentional Engagement 

Cross-correlation scores at a time lag of 0 minutes ranged from –.60 to +.90 for the video 

lecture [M = .16, SD = .39]. Mean cross-correlations as a function of time lag are presented in 

Figure 3a (see Supplementary Materials for individual participant data). 

 

Figure 3. Data and results from Experiment 1. (a) Mean cross-correlation scores as a function of time lag. (b) 

Results from the linear mixed-effects model testing the effects of positive time lag (0 to +9 minutes) on cross-

correlation scores. Model 1 (solid line) found robust temporal overlap at a time lag of 0 minutes, which decreased as 

time lag increased; however, when examining the average temporal overlap that could be expected by chance across 

all 1,000 repetition of Model 2 (dashed line), no such effects were found. Shaded bands depict +/– 95% CIs. 
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For all linear mixed-effects models presented, the coefficients are described using the 

unstandardized cross-correlation values rather than standardized beta weights. However, for 

reference on the strength of these effects, Table 1 presents both unstandardized (b) and 

standardized (β) results for all models conducted. In addition, for ease of interpretation, p-value 

calculations are provided using Satterthwaite approximations (Luke, 2017; Satterthwaite, 1941). 

 

Table 1. Results of the linear mixed-effects models for Experiment 1. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Evolutionary Psychology video lecture    

    Intercept   .15   .00   3.73*** 

    Time lag (0 to +9 minutes) –.03 –.24 –3.93*** 

Model 2: Evolutionary Psychology noise distributiona   

    Intercept   .03   .00   0.70 

    Time lag (0 to +9 minutes) –.01 –.04 –0.63 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Model 2 represents average values across all 1,000 repetitions. 

 

Overlap as a function of time lag. Model 1 examined the role of time lag (0 to +9 

minutes in 1-minute increments)2 on cross-correlation scores (see Figure 3b). Linear mixed-

effects models demonstrated a significant positive intercept (b = .15, p < .001), indicating that 

temporal overlap at a time lag of 0 minutes was significantly different than a null correlation. In 

 
2 To avoid overparameterization within the model, only positive time lags were used in the analysis; however, 

analyzing the data using only negative time lags replicated the pattern of effects found. See Supplementary Materials 

for complete analyses. 
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addition, cross-correlations were found to decrease as time lag increased (b = –.03, p < .001), 

illustrating that the temporal overlap between immediate and video-stimulated time series was 

greater when they were closer in time. 

Overlap for a noise distribution. To confirm that cross-correlation scores within our 

data were not due to intrinsic or random fluctuations, we randomly paired each participant’s 

immediate time series with another participant’s video-stimulated time series, calculated cross-

correlation scores across all time lags, and used linear mixed-effects models to examine the role 

of time lag (0 to +9 minutes) on cross-correlation scores. This procedure was then repeated 1,000 

times to construct our noise distribution. Across all repetitions (see Figure 3b), no significant 

differences were found for the average intercept (mean b = .03, mean p = .45) or for the average 

time lag (mean b = −.01, mean p = .46). In addition, z-scores (intercept = 3.23, time lag = –3.21), 

representing the extent to which our original data’s true effect differed from an intercept and 

slope that could be expected by chance, both exceeded the critical z-value at a 95% confidence 

level (i.e., +/–1.96). As such, our noise distributions indicated that the temporal overlap found 

within our original data is statistically different than patterns occurring by chance. 

Discussion 

In Experiment 1, we evaluated the utility of a new method for capturing dynamic changes 

in attentional engagement by examining the statistical convergence between ratings assessed via 

immediate and video-stimulated thought probes. Across aggregate measures, we found no 

differences between immediate and video-stimulated ratings (Hypothesis 1), demonstrating that 

engagement on average did not differ based on the method of assessment. Then across temporal 

measures, we found a statistically robust overlap between the underlying time series of the two. 

Namely, cross-correlations were highest at a time lag of 0 minutes (Hypothesis 2a) and 
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decreased with an increase in time lag (Hypothesis 2b), indicating a temporally precise 

convergence between immediate and video-stimulated time series. Additionally, when 

examining noise distributions constructed via random pairings, cross-correlation patterns did not 

reach significance and were statistically different than our original data (Hypotheses 2c and 2d), 

signifying that the convergence found could not have been expected by chance. Taken together, 

our data indicate that video-stimulated recall effectively captures a similar pattern of attention 

engagement to in-the-moment thought probes collected during the task. 

Experiment 2 

Given that video-stimulated recall captured accurate assessments of attentional 

engagement in Experiment 1, we next aimed to test the generality of this effect. In Experiment 2, 

we studied the degree to which these effects held when utilizing video lectures that varied on 

different engagement metrics. Prior work has used variable stimuli when studying dynamic 

changes in attention, including short instructional videos to probe attentional selection strategies 

(Lu et al., 2021; Wibawa & Muhidin, 2021), open course lectures to study the impact of attention 

in online learning (Risko et al., 2012; Schacter & Szpunar, 2015; Szpunar, Khan, et al., 2013), 

TED Talks to examine attentional flow (Nadeem, 2021; Xia & Hafner, 2021), and episodic or 

movie content to investigate free-flowing engagement (Cutting, 2016; Smith, 2013; Song et al., 

2021). This range not only reflects the diversity of attentional research for narrative material, but 

also highlights the various ways that engagement has been studied within the literature, often 

taking into account one’s interest (Schraw et al., 1995), perceived relevance (Astleitner & 

Wiesner, 2004; Axelson & Flick, 2010), effort (Chen & Wu, 2015), and experiences of flow 

(Csikszentmihalhi, 2020; Shernoff et al., 2014). To account for the diversity of video stimuli 

used in past work, and in turn, the characteristics of those stimuli that might drive engagement, it 
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is important for stimulated recall to be effective beyond a single lecture on Evolutionary 

Psychology (Experiment 1). As such, the utility of stimulated recall hinges on its ability to 

capture accurate assessments of attentional engagement over time, regardless of potential 

changes in video content. Therefore, in Experiment 2, we examined whether using videos that 

varied on several metrics of engagement would affect the statistical overlap found in Experiment 

1. 

Methods 

Participants 

 One hundred and eighteen participants (89 women, 26 men, 3 non-response; Mage = 21.2 

years, SDage = 8.3 years) who had not participated in Experiment 1 were recruited through the 

university’s online participant pool. 

Materials and Stimuli 

Video Lectures. Two 15-minute video lectures were used as the stimuli for Experiment 

2: an open-source Yale lecture on art history titled Lifestyles of the Rich and Famous: Houses 

and villas at Pompeii (Kleiner, 2009) and a TEDx Talk on computer science titled The Super 

Mario Effect: Tricking your brain into learning more (Rober, 2018). Similar to Experiment 1, 

the videos contained both audio and visual elements and were displayed at full-screen resolution, 

embedded in the browser, with no playback controls visible. Prior to the video-viewing task, 

participants reported their familiarity with the video topics. Overall, no differences were found 

between the two [art history, M = 2.3, SD = 1.4; computer science, M = 2.7, SD = 1.8; t(101) = 

1.76, p = .08, dz = .17], though familiarity ratings were statistically lower than the video topic 

used in Experiment 1 [all ps < .001, all ds > .60]. 
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To better capture differences across the video lectures used for the task, both videos were 

presented to a group of independent raters (30 participants: 16 women, 12 men, 1 non-binary, 1 

non-response; Mage = 20.9 years, SDage = 2.2 years) who assessed each video on various 

engagement metrics on a scale of 0 to 10 (see Supplementary Materials for a full listing of 

descriptors). These metrics were broadly defined to capture different aspects of the viewing 

experience (e.g., “to what extent was the video lecture enjoyable?”), the lecturer (e.g., “to what 

extent was the speaker animated?”), and the overall quality of the video (e.g., “to what extent 

was the audio quality clear?”). Importantly, based on these ratings, the art history video had 

significantly lower engagement metrics compared to the computer science video [all ps < .013, 

all dzs > .49], reflecting that the two did differ across various theoretical dimensions, an 

important prerequisite for this experiment3. 

Immediate / Video-Stimulated Probes. All material and stimuli were identical to 

Experiment 1, except that 10 immediate thought probes were utilized for each lecture during the 

video-viewing task to ensure consistent sampling frequency across the experiments, i.e., that 

thought probes still appeared every 92 seconds throughout the video lectures. Correspondingly, 

10 video-stimulated probes were used for each lecture during video-stimulated recall. 

 
3 To offer comparison to the video lecture used in Experiment 1, another group of independent raters (32 

participants: 17 women, 15 men; Mage = 20.4 years, SDage = 1.3 years) were asked to assess the evolutionary 

psychology video on various engagement metrics on a scale of 0 to 10 (see Supplementary Materials). Compared to 

the video lectures used in Experiment 2, the evolutionary psychology video had significantly higher engagement 

metrics compared to the art history video [most ps < .036, most ds > .55, except for ratings of flow, appeal, and 

video quality where ps > .11, ds < .41], but was statistically similar to the computer science video [most ps > .05, 

most ds < .51, except for ratings of appeal and video quality where ps < .025, ds > .59]. 
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Procedure 

The procedure was identical to Experiment 1. To account for the two video lectures used 

in the experiment, we counterbalanced the order of the video lectures between participants prior 

to the start of the task. During the study, participants first completed Phase 1 (i.e., the video-

viewing task) for both video lectures before proceeding to Phase 2 (i.e., the video-stimulated 

recall), which presented the video clips in the same counterbalanced order as in Phase 1. 

Results 

Data Exclusions 

The same exclusion criteria were used as in Experiment 1, with 13 participants excluded 

for prior knowledge of the video lectures and three participants excluded for non-response to 

20% of either immediate or video-stimulated probes. As such, data from 102 participants (82 

women, 19 men, 1 non-response; Mage = 21.5 years, SDage = 8.9 years) were included in the 

analysis. 

Data Analysis Plan 

To account for the addition of video lectures as a factor in Experiment 2, a modified 

analysis procedure was used to examine potential differences and interactions across various 

engagement metrics. Namely, across aggregate measures, overall differences were assessed 

using a repeated-measures ANOVA, with probe type (immediate versus video-stimulated) and 

video lecture (art history versus computer science) as factors. Similar to Experiment 1, we 

expected to find similar ratings of attentional engagement across immediate and video-stimulated 

probe responses within each video lecture (Hypothesis 1). Across temporal measures, overlap 

was assessed using cross-correlations and then evaluated as a function of time lag, noise 
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distribution, and video lecture using linear mixed-effects models. Similar to Experiment 1, for 

each video lecture, we expected to find peak positive cross-correlation scores at a time lag of 0 

minutes (Hypothesis 2a), decreases in cross-correlation scores with a shift in time lag away from 

0 minutes (Hypothesis 2b), a failure of Hypotheses 2a and 2b when examining noise 

distributions (Hypotheses 2c and 2d), and z-scores that exceed the critical z-value at a 95% 

confidence level (Hypothesis 2e). In addition, we also expected to find similarly strong patterns 

across the two video lectures (Hypothesis 2f). 

Aggregate Assessment of Attentional Engagement 

Average attentional engagement across all probe responses was statistically lower for the 

art history video lecture [M = 4.19, SD = 1.75] than the computer science video lecture [M = 

5.61, SD = 1.52; F(1,101) = 74.36, p < .001, η2
p = .42]. However, engagement was equivalent 

between immediate [M = 4.93, SD = 1.42] and video-stimulated responses [M = 4.87, SD = 1.51; 

F(1,101) = .51, p = .48, η2
p = .01]. The interaction between the two variables also did not reach 

significance [p = .25, η2
p = .01]. As such, aggregate measures indicated no difference in average 

attentional engagement for video lectures when probed immediately relative to after-the-fact. 

Temporal Assessment of Attentional Engagement 

Cross-correlation scores at a time lag of 0 minutes ranged from –.74 to +.97 for the art 

history video lecture [M = .34, SD = .44] and –.59 to +1 for the computer science video lecture 

[M = .26, SD = .40]. Mean cross-correlations as a function of time lag are presented in Figure 4a 

(see Supplementary Materials for individual participant data). 
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Figure 4. Data and results from Experiment 2. (a) Mean cross-correlation scores as a function of time lag. (b) 

Results from the linear mixed-effects models testing the effects of positive time lag (0 to +9 minutes) on cross-

correlation scores. Models 1 and 2 (solid lines) found robust temporal overlap at a time lag of 0 minutes for both 

video lectures, which decreased as time lag increased; however, when examining the average temporal overlap that 

could be expected by chance across all 1,000 repetitions of Models 3 and 4 (dashed lines), no such effects were 

found. Shaded bands depict +/– 95% CIs. 

 

Table 2 presents the unstandardized (b) and standardized (β) results for all linear mixed-

effects models. 
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Table 2. Results of the linear mixed-effects models for Experiment 2. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Art History video lecture    

    Intercept   .28   .00   7.58*** 

    Time lag (0 to +9 minutes) –.05 –.43 –7.58*** 

Model 2: Computer Science video lecture    

    Intercept   .19   .00   4.72*** 

    Time lag (0 to +9 minutes) –.03 –.29 –4.46*** 

Model 3: Art History noise distributiona    

    Intercept   .09   .00   2.25 

    Time lag (0 to +9 minutes) –.01 –.13 –2.08 

Model 4: Computer Science noise distributiona    

    Intercept   .00   .00   0.06 

    Time lag (0 to +9 minutes) –.00 –.01 –0.12 

Model 5: Effect of video lecture    

    Time lag (0 to +9 minutes) –.05 –.37 –7.74*** 

    Video Lecture (Art History = 0) –.10 –.02 –1.96 

    Interaction   .02   .08   2.13* 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Models 3 and 4 represents average values across all 1,000 repetitions. 

 

Overlap as a function of time lag. Models 1 and 2 examined the role of time lag (0 to 

+9 minutes)4 on cross-correlation scores for each video lecture (see Figure 4b). Here, we found a 

 
4 When analyzing the data using only negative time lags, we replicated the pattern of effects found within positive 

time lags (see Supplementary Materials). 
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significant positive intercept for both the art history video lecture (b = .28, p < .001) and the 

computer science video lecture (b = .19, p < .001), demonstrating that temporal overlap at a time 

lag of 0 minutes was statistically different than a null correlation. In addition, we found a 

significant effect of time lag for both the art history video lecture (b = –.05, p < .001) and the 

computer science video lecture (b = –.03, p < .001), illustrating that cross-correlations decreased 

as time lag increased. 

Overlap for a noise distribution. Similar to Experiment 1, for each video lecture, we 

randomly paired each participant’s immediate time series with another participant’s video-

stimulated time series (i.e., video lecture was preserved within each random pair), calculated 

cross-correlation scores across all time lags, and used linear mixed-effects models to examine the 

role of time lag (0 to +9 minutes) on cross-correlation scores. We then repeated this procedure 

1,000 times to create our noise distribution, and across all repetitions (see Figure 4b), average 

intercept (art history: mean b = .09, mean p = .10; computer science: mean b = .00, mean p = .51) 

and average time lag (art history: mean b = −.01, mean p = .13; computer science: mean b = 

−.00, mean p = .52) did not reach significance for either video lecture. In addition, z-scores for 

both the art history video lecture (intercept = 5.96, time lag = –6.06) and the computer science 

video lecture (intercept = 4.77, time lag = –4.32) exceeded the critical z-value at a 95% 

confidence level (i.e., +/–1.96). 

Overlap as a function of time lag and video lecture. Model 5 examined the role of time 

lag (0 to +9 minutes) and video lecture (art history versus computer science) on cross-correlation 

scores. Similar to Models 1 and 2, we found an overall decrease in cross-correlations with an 

increase in time lag (b = −.05, p < .001). Although no overall differences were found as a 

function of video lecture (b = −.10, p = .053), the interaction term showed that temporal overlap 
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had a higher peak at a time lag of 0 minutes and a sharper drop-off as time lag increased for the 

art history versus computer science video lecture (b = .02, p = .036). 

Discussion 

In Experiment 2, we evaluated whether video-stimulated recall could generalize and 

accurately capture dynamic changes in attentional engagement across videos that varied on 

engagement metrics. Similar to Experiment 1, no aggregate differences were found (Hypothesis 

1) and temporal overlap between immediate and video-stimulated time series was statistically 

robust, with the strongest convergence occurring at a time lag of 0 minutes (Hypothesis 2a), 

convergence decreasing with an increase in time lag (Hypothesis 2b), no discernable pattern of 

effects when examining noise distributions that could be expected by chance (Hypotheses 2c and 

2d), and statistical differences when comparing our original data against a noise distribution 

(Hypothesis 2e). Additionally, when assessing for effects across video lectures that differed on 

engagement metrics, we did not find any overall effect for video content, however, an interaction 

between time lag and video lecture revealed a higher convergence at a time lag of 0 minutes for 

the art history versus computer science video lecture (Hypothesis 2f). This finding suggests that 

temporal overlap may be stronger for videos that have lower engagement metrics. Regardless of 

this interaction, the data indicated that video-stimulated recall can provide accurate measures of 

attentional engagement even when assessing videos that differ in their ratings of overall 

engagement. 

Experiment 3 

Experiments 1 and 2 found consistent evidence that stimulated recall is an effective 

approach for assessing prior moment-to-moment attentional states across multiple kinds of 
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videos. However, in both cases, the video-stimulated probe clips maintained the same sequential 

ordering as when they were initially presented, which may have unknowingly aided individuals 

in accurately responding. This chronological ordering is consistent with approaches in prior work 

utilizing video-stimulated recall. That is, past work has typically used chronologically ordered 

mnemonic stimuli from the original event by either presenting brief clips in the same order as 

they were experienced in real-time (Conway & Loveday, 2015; Lyle, 2003; Morgan, 2007) or 

using complete and full recordings of the event as it occurred (MacIntyre & Legatto, 2010; 

O'Brien, 1993). This chronological ordering was designed to maximize the recall of prior 

encounters, particularly given that temporal order has been shown to enhance memorial accuracy 

(Anderson & Conway, 1993). However, it is possible that individuals could have used this 

ordering to strategically respond to probes based on general or predictable patterns within the 

data. For example, if individuals reported that their attentional engagement during in-the-

moment thought probes was higher at the start and lower at the end of the video lecture, they 

may have simply responded with similar trends for sequentially presented video clips during 

stimulated recall, instead of remembering their prior attentional states. It is also plausible that 

this type of strategic responding may have impacted the art history video lecture more than the 

computer science video lecture given that the former had lower ratings across all engagement 

metrics (e.g., interest, memorability), resulting in a higher likelihood of general or predictable 

patterns within in-the-moment probe data. To rule out these concerns, it is critical to establish 

whether stimulated recall remains an effective metric of prior attentional states, even when the 

probe clips are presented out of order, disrupting sequential and chronological ordering. 

Therefore, in Experiment 3, we examined whether varying the sequential ordering of the video-

stimulated probe clips would affect the statistical overlap found in Experiments 1 and 2. 
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Methods 

Participants 

 One hundred and twenty-two participants (74 women, 47 men, 1 non-response; Mage = 

20.3 years, SDage = 2.3 years) who had not participated in prior experiments were recruited 

through the university’s online participant pool. 

Materials and Stimuli 

Video Lectures. All material and stimuli were identical to Experiment 2. As per prior 

experiments, participants did not report any differences in familiarity between the two video 

topics [art history, M = 2.1, SD = 1.1; computer science, M = 2.3, SD = 1.7; t(99) = 1.38, p = .17, 

dz = .14]. As before, familiarity for the video topics was statistically lower than Experiment 1 [all 

ps < .001, all ds > .82]. 

Immediate / Video-Stimulated Probes. All material and stimuli were identical to 

Experiment 2, except that the video-stimulated probe clips were presented in non-sequential 

runtime order, i.e., in a randomized order that was different to the chronological order from the 

original video lecture. 

Procedure 

The procedure was identical to Experiment 2. 

Results 

Data Exclusions 

The same exclusion criteria were used as in prior experiments, with 18 participants 

excluded for prior knowledge of the video lectures and four participants excluded for non-
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response to 20% of either immediate or video-stimulated probes. As such, data from 100 

participants (65 women, 34 men, 1 non-response; Mage = 20.3 years, SDage = 2.4 years) were 

included in the analysis. 

Data Analysis Plan 

The same analysis procedures were used as in Experiment 2. To summarize, for 

aggregate measures, overall differences were assessed using a repeated-measures ANOVA as a 

function of probe type (immediate versus video-stimulated) and video lecture (art history versus 

computer science), and we expected to find similar ratings of attentional engagement across 

probe type within each video lecture (Hypothesis 1). For temporal measures, overlap was 

explored by assessing immediate and video-stimulated time series using cross-correlations and 

evaluating them as a function of time lag, noise distributions, and video lecture using linear 

mixed-effects models. Similar to Experiment 2, for each video lecture, we expected peak positive 

cross-correlation scores at a time lag of 0 minutes (Hypothesis 2a), decreases in cross-correlation 

scores with an increase in time lag (Hypothesis 2b), a failure of Hypotheses 2a and 2b when 

examining noise distributions (Hypotheses 2c and 2d), z-scores that exceed the critical z-value at 

a 95% confidence level (Hypothesis 2e), and similarly strong patterns when comparing between 

video lectures (Hypothesis 2f). 

Aggregate Assessment of Attentional Engagement 

 Average attentional engagement across probe responses was statistically lower for the art 

history video lecture [M = 4.07, SD = 1.65] versus computer science video lecture [M = 5.65, SD 

= 1.34; F(1,99) = 95.18, p < .001, η2
p = .49]. However, similar to Experiment 2, engagement was 

equivalent across immediate [M = 4.89, SD = 1.28] and video-stimulated responses [M = 4.83, 
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SD = 1.33; F(1,99) = 1.00, p = .32, η2
p = .01], with no interaction between the two variables [p = 

.69, η2
p < .01]. 

Temporal Assessment of Attentional Engagement 

Cross-correlation scores at a time lag of 0 minutes ranged from –.82 to +.94 for the art 

history video lecture [M = .18, SD = .40] and –.68 to +.94 for the computer science video lecture 

[M = .14, SD = .37]. Mean cross-correlations as a function of time lag are presented in Figure 5a 

(see Supplementary Materials for individual participant data). 
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Figure 5. Data and results from Experiment 3. (a) Mean cross-correlation scores as a function of time lag. (b) 

Results from the linear mixed-effects models testing the effects of positive time lag (0 to +9 minutes) on cross-

correlation scores. Models 1 and 2 (solid lines) found robust temporal overlap at a time lag of 0 minutes for both 

video lectures, which decreased as time lag increased; however, when examining the average temporal overlap that 

could be expected by chance across all 1,000 repetitions of Models 3 and 4 (dashed lines), no such effects were 

found. Shaded bands depict +/– 95% CIs. 

 

Table 3 presents the unstandardized (b) and standardized (β) results for all linear mixed-

effects models. 
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Table 3. Results of the linear mixed-effects models for Experiment 3. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Art History video lecture    

    Intercept   .18   .00   4.86*** 

    Time lag (0 to +9 minutes) –.03 –.29 –4.65*** 

Model 2: Computer Science video lecture    

    Intercept   .12   .00   3.33** 

    Time lag (0 to +9 minutes) –.02 –.25 –3.79*** 

Model 3: Art History noise distributiona    

    Intercept   .04   .00   1.05 

    Time lag (0 to +9 minutes) –.01 –.06 –0.93 

Model 4: Computer Science noise distributiona    

    Intercept   .02   .00   0.60 

    Time lag (0 to +9 minutes) –.00 –.04 –0.51 

Model 5: Effect of video lecture    

    Time lag (0 to +9 minutes) –.03 –.27 –4.75*** 

    Video Lecture (Art History = 0) –.06 –.06 –1.42 

    Interaction   .01   .04   0.99 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Models 3 and 4 represents average values across all 1,000 repetitions. 

 

Overlap as a function of time lag. Models 1 and 2 examined the role of time lag (0 to 

+9 minutes)5 on cross-correlation scores for each video lecture (see Figure 5b). Similar to 

Experiment 2, we found a significant positive intercept for both the art history video lecture (b = 

 
5 Negative time lags replicated the pattern of effects found within positive time lags (see Supplementary Materials). 
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.18, p < .001) and computer science video lecture (b = .12, p = .001), with cross-correlations 

decreasing as time lag increased for both the art history video lecture (b = –.03, p < .001) and 

computer science video lecture (b = –.02, p < .001). 

Overlap for a noise distribution. When examining the effect of time lag (0 to +9 

minutes) on cross-correlation scores for all 1,000 repetitions (see Figure 5b), average intercept 

(art history: mean b = .04, mean p = .37; computer science: mean b = .02, mean p = .45) and 

average time lag (art history: mean b = −.01, mean p = .39; computer science: mean b = −.00, 

mean p = .47) did not reach significance. Z-scores for both the art history video lecture (intercept 

= 4.13, time lag = –3.81) and computer science video lecture (intercept = 3.02, time lag = –3.43) 

both exceeded the critical z-value at a 95% confidence level. 

Overlap as a function of time lag and video lecture. Model 5 examined the role of time 

lag (0 to +9 minutes) and video lecture (art history versus computer science) on cross-correlation 

scores. Similar to Models 1 and 2, and similar to Experiment 2, we found an overall decrease in 

cross-correlations with an increase in time lag (b = −.03, p < .001), and no overall differences as 

a function of video lecture (b = −.06, p = .16). However, unlike Experiment 2, there was no 

significant interaction between time lag and video lecture, indicating no differences in temporal 

overlap between the art history and computer science video lectures (b = .01, p = .33). 

Discussion 

In Experiment 3, we evaluated the accuracy of capturing dynamic changes in attentional 

engagement via video-stimulated recall when probes were assessed in non-sequential runtime 

order. Similar to Experiment 2, we found no aggregate differences between immediate and 

video-stimulated ratings (Hypothesis 1). In addition, we found a robust temporal overlap 
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between immediate and video-stimulated time series across both video lectures, with the 

strongest convergence at a time lag of 0 minutes (Hypothesis 2a) that decreased as time lag 

increased (Hypothesis 2b), no patterns when examining a noise distribution that could have been 

expected by chance (Hypotheses 2c and 2d), and statistical differences when comparing our 

original data against the noise distribution (Hypothesis 2e). Unlike Experiment 2 though, there 

was no interaction found between time lag and video lecture, indicating consistent convergence 

regardless of the characteristics of the video (Hypothesis 2f). In summary, our data indicate that 

probing video-stimulated recall outside of sequential order results in coinciding measures of 

attentional engagement. 

General Discussion 

In the present paper, we tested whether stimulated recall, a method wherein individuals 

are asked to retrospectively assess specific subjective experiences with the aid of a 

corresponding memorial stimulus (Bloom, 1953; Gass & Mackey, 2016; Lyle, 2003), could 

prove beneficial within the attentional domain to capture dynamic fluctuations in engagement 

over time. Across all experiments, we found that overall engagement levels did not differ 

between in-the-moment and video-stimulated reports, and more importantly, that there was 

strong convergence between the time series of attentional engagement for in-the-moment and 

video-stimulated responses. We confirmed the generality of this convergence by replicating the 

finding across video lectures that differed in topic (i.e., evolutionary psychology, art history, and 

computer science), in independent metrics of engagement (e.g., interest, memorability, cognitive 

effort), in length (i.e., 30 and 15 minutes), and in instances where recall stimuli were presented in 

the same versus random chronological order. Supporting these findings, we found statistically 

significant differences between our original data and a noise distribution generated by randomly 
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pairing a given participant’s in-the-moment time series with a different participants’ video-

stimulated time series. Together, the foregoing results support the notion that stimulated recall 

produces temporally accurate and statistically similar ratings of attentional engagement 

compared to in-the-moment thought probes. Given these findings, stimulated recall becomes a 

new and practical methodological approach to probing dynamic states of attention. 

Stimulated recall of attentional states: Benefits, limitations, and future possibilities 

The present implementation of stimulated recall has several methodological benefits. 

First, this method has the potential of assessing attentional states at much higher levels of 

temporal frequency than what has been possible in the past with in-the-moment thought probes 

and aggregate retrospective reports. Conceivably, individuals could be given recall cues (e.g., 

video clips) that sample the original task (e.g., video lecture) at intervals in the order of seconds 

rather than minutes to capture detailed moment-to-moment fluctuations in attentional states. 

Second, this method provides the flexibility to assess a wide range of subjective experiences, 

including various states of attention (e.g., attentiveness, mind wandering) and specific 

dimensions of attention (e.g., depth and intentionality of mind wandering) using a variety of 

response options (e.g., dichotomous, rating, semantic differences, free response). Third, this 

method can be flexibly applied across numerous task paradigms (e.g., video watching, live 

lecture settings, social interactions) since stimulated recall has already been successfully used 

with these activities across communication (Gregersen et al., 2014; MacIntyre & Legatto, 2010), 

education (Meade & McMeniman, 1992; Morgan, 2007; O'Brien, 1993), and clinical domains 

(Paskins et al., 2014; Sinnott et al., 2017). 

It is important to note, however, that while stimulated recall promises to be a useful tool 

across many research situations, it is possible that not all paradigms will benefit equally from this 
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method. Specifically, stimulated recall may be highly beneficial when attentional processes are 

measured during naturalistic, free-flowing activities, like watching a video lecture (Wammes & 

Smilek, 2017), having a conversation (Maran et al., 2020), operating a driving simulator (Albert 

et al., 2018), or monitoring an air-traffic signal (Endsley & Rogers, 1996), as these activities are 

comparable to prior use cases of stimulated recall. For example, short video clips from a 

recorded session in a driving simulator could be used to gauge moment-to-moment changes in 

attentional states after-the-fact. However, this method may be less useful when attentional 

process are measured across more controlled, trial-based paradigms, such as the n-back 

(Kirchner, 1958), go/no-go (Donders, 1969), and sustained attention to response tasks 

(Robertson et al., 1997), given that these paradigms likely contain insufficient variability within 

the audio and/or visual stimuli to produce distinct momentary memories of attention. For 

example, discrete trial-specific memories are not likely to be formed during the metronome 

response task, which requires a synchronous response to an auditory tone presented every 1,300 

milliseconds for 19.5 minutes (Seli, Cheyne, et al., 2013). Although thoughtful and practical 

consideration is needed when utilizing this approach, the ability to capture temporal detail, 

investigative range, and task flexibility should prove fruitful within the field of attention. 

The present findings also demonstrate how quantitative analytics can be used to enhance 

research conducted using stimulated recall. Prior work using stimulated recall has primarily 

relied on qualitative assessments of video-stimulated responses, either through data-driven or 

concept-driven coding schemes (Gibbs, 2007; Willig, 2013). Supplementing these assessments 

with nonlinear techniques such as cross-correlations or modelling techniques such as linear 

mixed-effects models can be useful for assessing dynamic patterns of data in an individualized 

manner while allowing for higher degrees of complexity to be built within datasets (e.g., 
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assessing joint convergence between sets of cross-correlations or nesting hierarchical data at 

more than one level). Though attention should be paid to spurious relationships that can occur 

within behavioural time series (see Dean & Dunsmuir, 2016), the practical and functional utility 

of these analytical techniques should prove advantageous for the domains that currently utilize 

stimulated recall and for those that hope to do so in the future. 

In addition to the aforementioned benefits of stimulated recall, one future use of this 

method can be to combine it with existing techniques to produce a more fine-grained 

understanding of attentional states over time. For example, studies could probe both in-the-

moment and video-stimulated ratings of attentional states and combine these non-overlapping 

assessments to offer unique insights into the temporal dynamics of attention (i.e., the depth and 

structure of attentional patterns within individuals). Alternatively, studies could probe both 

retrospective reports and video-stimulated ratings of attentional states to assess how individuals 

arrive at overall aggregate metrics (i.e., whether this measure is based on a cumulative 

assessment or on a smaller combination of time points). These novel and unconventional 

approaches could prove valuable in asking more complex questions about how and why 

attentional states change over time and across embedded contexts. 

Stimulated recall of attentional states: Theoretical implications 

A broader theoretical implication of our finding that individuals can provide accurate 

retrospective reports of their attentional engagement is that it indicates that individuals have 

persistent memories of prior attentional experiences, i.e., remembered momentary attentional 

states (RMAS). To date, little is known about the nature of memories for prior attentional states. 

The recall of one’s specific past attentional experiences would certainly be useful for guiding 

future attentional strategies, particularly in light of the notion that individuals have control over 
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their attentional experiences (e.g., the capability to intentionally mind wander; Seli, Risko, & 

Smilek, 2016; Seli, Risko, Smilek, et al., 2016). For example, students reviewing a lecture might 

recall that they were not paying attention during a certain section of the lecture, and thus allocate 

more time to studying that specific content. Studies aimed at understanding the nature of 

remembered momentary attentional states could shed light on the parameters and boundaries of 

these memorial events and how they may be used in future episodes of attending. 

One place to start would be to further explore our finding of subtle differences in the 

strength of convergence across video lectures (i.e., the temporal overlap between in-the-moment 

and retrospective probes). Specifically, convergence was stronger for the video lecture with 

lower engagement metrics, but only when video-stimulated ratings were probed sequentially in 

Experiment 2 and not when they were probed in random order in Experiment 3. Because 

stimulated recall uses memorial aids as a reference point to accurately recall prior subjective 

states (Bloom, 1953; Gass & Mackey, 2016; Lyle, 2003), one likely explanation is that order 

effects led to higher and more temporally precise convergence in cases where videos might have 

predictable attentional trends. For instance, videos that are considered less enjoyable or less 

interesting may lead to predictable engagement ratings that gradually decrease over time. By that 

same principle, more enjoyable or more interesting videos might have less predictable attentional 

trends due to ratings that are more variable and less tightly linked over time. If this were true, 

utilizing stimulated recall with video clips presented in a random order would likely remove 

temporal order cues, thus reducing predictability and dampening differences in remembered 

momentary attentional states across videos that varying in levels of engagement. Indeed, this 

may explain why a difference in convergence was not observed in Experiment 3. The present 

conjectures are consistent with stimulated recall work speculating that individuals may impose 
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order when recollecting prior subjective states (Lyle, 2003), and with memory work showing 

enhanced recall when events occur in temporal sequence (Franklin et al., 2020; Rubin & 

Umanath, 2015). 

Another concrete step would be to determine the specific characteristics of remembered 

momentary attentional states. One question that is fascinating from an attentional perspective is 

whether memories of ‘mind wandering’ are as detailed and accurate as those of ‘engagement’. 

Prior work has demonstrated that mind wandering is only one form of attentional disengagement 

that can occur (Danckert, 2018), with others including external distractions (Stawarczyk et al., 

2011) and mind-blanking (Ward & Wegner, 2013). For this reason, it is possible that memories 

for mind wandering states might be less accurate than memories of engagement because the 

former requires the recollection of more specific thought content. Another question that is 

intriguing from a memory perspective is to what extent remembered momentary attentional 

states overlap with known concepts from the memory literature. Prior work suggests that event 

and episodic memories (i.e., memories of specific narrative or personal experiences) are 

temporarily stored as short, ordered visual excerpts that are later consolidated with general 

knowledge (Conway, 2009; Rubin & Umanath, 2015). This conceptualization is consistent with 

our current findings and suggest that attentional states might be stored both discretely and 

holistically, such that chronology may be an informative but not necessary requirement for its 

recall. Although more work is needed to uncover the characteristics of remembered momentary 

attentional states, our current findings present new lines of research for how subjective 

experiences can be leveraged to better predict and control individual attentional allocation (Breed 

& Moore, 2016; Fernandez-Duque et al., 2000; Roebers, 2017). 
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Conclusion 

 The present work provides converging evidence that stimulated recall can be highly 

beneficial for use within the field of attention. Stimulated recall was found to be similar to in-

the-moment thought probes, with strong convergence between the two sets of responses when 

their time series were directly overlaid, decreased convergence with an increase in time lag, and 

no convergence when comparing our original time series with randomly shuffled and paired 

responses. Together, these results demonstrate that stimulated recall is a viable and practical 

alternative for unobtrusively capturing various qualities of attentional states in a variety of 

settings. Importantly, the method allows for the measurement of dynamic changes in attentional 

processes over time with a high degree of temporal precision. 
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Experiment 1 

Results 

Data Analysis 

Constructing the Time Series. Immediate and video-stimulated probe responses were 

converted into immediate and video-stimulated time series, respectively, by interpolating the 

probe responses at 1-minute intervals using a piecewise polynomial function (i.e., PCHIP, 

Piecewise Cubic Hermite Interpolating Polynomial; Fritsch & Carlson, 1980; Kahaner et al., 

1988). This function was selected because of its ability to estimate a time series within the 

bounds of the data points in order to best preserve and approximate dynamic fluctuations within 

a dataset (Barker & McDougall, 2020; Dan et al., 2020; Zeinali et al., 2014). Data interpolation 

resulted in a 16-point time series (i.e., 1 point per minute) for every immediate and video-

stimulated time series for each participant. 

Assessing the Temporal Relationship. Cross-correlations between each participant’s 

immediate and video-stimulated time series were calculated using a step size of 1-minute to 

reflect the data interpolation intervals employed in the prior stage. This resulted in cross-

correlation scores ranging from time lags of –9 to +9 minutes for each participant. Figure S1 

illustrates these cross-correlation scores and demonstrates the range and variability seen within 

the data.  
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Figure S1. A matrix of cross-correlation plots for each participant in Experiment 1, arranged and coloured in descending order of maximum cross-correlation at a 

time lag of 0 minutes for the video lecture. Perfect cross-correlations (i.e., when no fluctuations existed between a participant’s immediate or video-stimulated 

time series such that the cross-correlation scores could not be calculated across any time lags) are not depicted within the matrix.
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Temporal Assessment of Attentional Engagement 

Overlap as a function of time lag. Model 1 examined the role of time lag (0 to –9 

minutes in 1-minute decrements) on cross-correlation scores (see Table S1). Similar to positive 

time lags, we found a significant positive intercept (b = .12, p < .001) and a significant decrease 

in cross-correlations with an increase in time lag (b = –.02, p < .001). 

Overlap for a noise distribution. When examining the effect of time lag (0 to –9 

minutes) on cross-correlation scores for all 1,000 repetitions in our noise distribution, no 

differences were found in average intercept (mean b = .01, mean p = .50) and average time lag 

(mean b = –.01, mean p = .47). Z-scores (intercept = 2.87, time lag = –3.02), representing the 

extent to which our original data’s true effect differed from an intercept and slope that could be 

expected by chance, both exceeded the critical z-value at a 95% confidence level (i.e., +/–1.96). 

 

Table S1. Results of the linear mixed-effects models with negative time lags for Experiment 1. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Evolutionary Psychology video lecture    

    Intercept   .12   .00   3.43*** 

    Time lag (0 to –9 minutes) –.02 –.24 –3.72*** 

Model 2: Evolutionary Psychology noise distributiona   

    Intercept   .01   .00   0.33 

    Time lag (0 to –9 minutes) –.01 –.03 –0.50 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Model 2 represents average values across all 1,000 repetitions. 
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Experiment 2 

Methods 

Materials and Stimuli 

Video Lectures. Table S2 details the full listing of descriptors and responses for 

engagement metrics that participants assessed for each video lecture. 

 

Table S2. List of descriptors and responses assessed for each video lecture. 

# 
Descriptive Measure 

(assessed on a scale of 0 to 10) 

Art 

History 

Computer 

Science 

Evolutionary 

Psychology 

M SD M SD M SD 

1. To what extent was the video lecture enjoyable? 4.2 2.6 6.9 2.3 6.6 2.8 

2. To what extent was the video lecture interesting? 4.4 2.6 6.5 2.4 7.0 2.6 

3. To what extent was the video lecture memorable? 3.6 2.6 6.8 2.4 5.9 2.9 

4. To what extent was the video lecture engaging? 3.2 2.5 6.9 2.3 6.0 3.1 

5. To what extent were you able to completely focus 

your thoughts on the video lecture without 

straining to pay attention? 

3.6 2.8 6.3 2.5 4.9 3.0 

6. To what extent did you have to exert effort to focus 

your thoughts on the video lecture? 

6.7 2.4 4.1 2.5 5.2 3.0 

7. To what extent was the speaker personable? 4.5 2.4 7.1 2.7 7.4 2.6 

8. To what extent was the speaker animated? 4.1 2.6 7.3 2.8 6.3 2.8 

9. To what extent was the speaker effective at 

communicating their topic? 

6.3 2.5 8.2 1.7 8.0 2.3 

10. To what extent were the graphics / videos user by 

the lecturer visually appealing? 

4.9 2.6 7.6 1.9 3.8 2.7 

11. To what extent was the video quality clear? 5.9 2.6 7.4 2.0 5.9 3.0 

12. To what extent was the audio quality clear? 6.8 2.5 7.8 1.7 8.1 2.2 
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Results 

Data Analysis 

Assessing the Temporal Relationship. Figure S2 illustrates the range and variability of 

cross-correlation scores found within Experiment 2.  
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Figure S2. A matrix of cross-correlation plots for each participant for the art history (circles) and computer science (triangle) video lectures in Experiment 2. 

Matrices are arranged and coloured in descending order of maximum cross-correlation at a time lag of 0 minutes for the art history video lecture. Perfect cross-

correlations (i.e., when there were no fluctuations between a participant’s immediate or video-stimulated time series such that cross-correlation scores could not 

be calculated) are not depicted within the matrix. 
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Temporal Assessment of Attentional Engagement 

Overlap as a function of time lag. Models 1 and 2 examined the role of time lag (0 to –9 

minutes) on cross-correlation scores for each video lecture (see Table S3). Similar to positive 

time lags, we found a significant positive intercept for both the art history video lecture (b = .22, 

p < .001) and computer science video lecture (b = .14, p < .001) and a decrease in cross-

correlations as time lag increased for both the art history video lecture (b = –.04, p < .001) and 

computer science video lecture (b = –.03, p < .001). 

Overlap for a noise distribution. When examining the effect of time lag (0 to –9 

minutes) on cross-correlation scores for all 1,000 repetitions in our noise distribution, no 

differences were found in the average intercept (art history: mean b = .07, mean p = .16; 

computer science: mean b = .01, mean p = .49) or average time lag (art history: mean b = −.01, 

mean p = .22; computer science: mean b = −.00, mean p = .50). In addition, z-scores for both the 

art history video lecture (intercept = 4.73, time lag = –5.19) and computer science video lecture 

(intercept = 3.13, time lag = –3.31) also exceeded the critical z-value at a 95% confidence level 

(i.e., +/–1.96). 

Overlap as a function of time lag and video lecture. Model 5 examined the role of time 

lag (0 to –9 minutes) and video lecture (art history versus computer science) on cross-correlation 

scores. Similar to positive time lags, we found an overall decrease in cross-correlations with an 

increase in time lag (b = −.04, p < .001) and no overall differences as a function of video lecture 

(b = −.08, p = .14). Here however, unlike positive time lags, we found no differences for the 

interaction between time lag and video lecture (b = .01, p = .11). 
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Table S3. Results of the linear mixed-effects models with negative time lags for Experiment 2. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Art History video lecture    

    Intercept   .22   .00   5.60*** 

    Time lag (0 to –9 minutes) –.04 –.37 –6.17*** 

Model 2: Computer Science video lecture    

    Intercept   .14   .00   3.69*** 

    Time lag (0 to –9 minutes) –.03 –.26 –4.07*** 

Model 3: Art History noise distributiona    

    Intercept   .07   .00   1.80 

    Time lag (0 to –9 minutes) –.01 –.11 –1.56 

Model 4: Computer Science noise distributiona    

    Intercept   .01   .00   0.26 

    Time lag (0 to –9 minutes) –.00 –.02 –0.26 

Model 5: Effect of video lecture    

    Time lag (0 to –9 minutes) –.04 –.33 –6.26*** 

    Video Lecture (Art History = 0) –.08 –.03 –1.49 

    Interaction   .01   .07   1.61 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Models 3 and 4 represents average values across all 1,000 repetitions. 
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Experiment 3 

Results 

Data Analysis 

Assessing the Temporal Relationship. Figure S3 illustrates the range and variability of 

cross-correlation scores found within Experiment 3.  
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Figure S3. A matrix of cross-correlation plots for each participant for the art history (circles) and computer science (triangle) video lectures in Experiment 3. 

Matrices are arranged and coloured in descending order of maximum cross-correlation at a time lag of 0 minutes for the art history video lecture. Perfect cross-

correlations i.e., when there were no fluctuations between a participant’s immediate or video-stimulated time series such that cross-correlation scores could not 

be calculated) are not depicted within the matrix.



Running head: RETROSPECTIVE ATTENTION 1 

Temporal Assessment of Attentional Engagement 

Overlap as a function of time lag. Models 1 and 2 examined the role of time lag (0 to –9 

minutes) on cross-correlation scores for each video lecture (see Table S4), and similar to positive 

time lags, we found a significant positive intercept for both the art history video lecture (b = .15, 

p < .001) and computer science video lecture (b = .10, p = .002), and a decrease in cross-

correlations as time lag increased for both the art history video lecture (b = –.03, p < .001) and 

computer science video lecture (b = –.02, p < .001). 

Overlap for a noise distribution. When examining the effect of time lag (0 to –9 

minutes) on cross-correlation scores for all 1,000 repetitions, no differences were found for 

average intercept (art history: mean b = .04, mean p = .37; computer science: mean b = .01, mean 

p = .50) and average time lag (art history: mean b = −.01, mean p = .39; computer science: mean 

b = −.00, mean p = .50). Z-scores for the art history video lecture (intercept = 2.95, time lag = –

3.60) and computer science video lecture (intercept = 2.50, time lag = –2.97) also exceeded the 

critical z-value at a 95% confidence level (i.e., +/–1.96). 

Overlap as a function of time lag and video lecture. Model 5 examined the role of time 

lag (0 to –9 minutes) and video lecture (art history versus computer science) on cross-correlation 

scores. Similar to positive time lags, we found an overall decrease in cross-correlations with an 

increase in time lag (b = −.03, p < .001) and no overall differences as a function of video lecture 

(b = −.04, p = .38) or for the interaction between time lag and video lecture (b = .01, p = .44). 

 

  



RETROSPECTIVE ATTENTION  73 

 

Table S4. Results of the linear mixed-effects models with negative time lags for Experiment 3. 

Model predicting cross-correlation scores    b     β     t 

Model 1: Art History video lecture    

    Intercept   .15   .00   4.13*** 

    Time lag (0 to –9 minutes) –.03 –.28 –4.68*** 

Model 2: Computer Science video lecture    

    Intercept   .10   .00   3.15** 

    Time lag (0 to –9 minutes) –.02 –.23 –3.68*** 

Model 3: Art History noise distributiona    

    Intercept   .04   .00   1.03 

    Time lag (0 to –9 minutes) –.01 –.06 –0.92 

Model 4: Computer Science noise distributiona    

    Intercept   .01   .00   0.31 

    Time lag (0 to –9 minutes) –.00 –.02 –0.28 

Model 5: Effect of video lecture    

    Time lag (0 to –9 minutes) –.03 –.26 –4.71*** 

    Video Lecture (Art History = 0) –.04 –.02 –0.88 

    Interaction   .01   .03   0.78 

  * p < .05, ** p < .01, *** p < .001 

  a b, β, and t for Models 3 and 4 represents average values across all 1,000 repetitions. 

 

 


